METODOLOGÍA DE FORMULACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS DE SUMINISTRO DE AGUA CALIENTE SANITARIA DOMICILIARIA

Documento elaborado por la División de Evaluación Social de Inversiones

Octubre 2022
Contenido
Ficha Resumen.. 3
Glosario ... 5
1 Introducción ... 6
2 Antecedentes generales del Sector .. 7
 2.1 Descripción de la Política Energética ... 7
 2.2 Descripción de un Sistema Solar Térmico ... 8
 2.3 Uso de sistemas solares en Chile ... 9
3 Formulación del Proyecto .. 10
 3.1 Descripción del problema ... 10
 3.2 Diagnóstico situación actual .. 10
 3.2.1 Identificación del área de influencia .. 10
 3.2.2 Identificación de la población objetivo .. 11
 3.2.3 Caracterización de la vivienda .. 12
 3.2.4 Demanda actual y proyectada .. 13
 3.3 Análisis de la oferta actual ... 13
 3.4 Balance oferta demanda .. 14
 3.5 Identificación de alternativas .. 14
 3.5.1 Optimización situación base .. 14
 3.5.2 Identificación de alternativas de solución .. 15
 3.5.3 Sistema Solar Térmico .. 17
4 Evaluación Social del Proyecto ... 18
 4.1 Enfoques de evaluación ... 18
 4.2 Identificación beneficios .. 19
 4.3 Cuantificación de beneficios .. 19
 4.4 Valorización de beneficios .. 20
 4.5 Identificación de costos ... 21
 4.5.1 Costos de inversión ... 21
 4.5.2 Costos de operación .. 21
 4.5.3 Costos de mantenimiento ... 22
 4.6 Construcción flujos netos ... 22
 4.6.1 Corrección a precios sociales .. 22
 4.6.2 Horizonte de evaluación .. 23
Ficha Resumen

<table>
<thead>
<tr>
<th>Nombre Metodología</th>
<th>Formulación y Evaluación Social de Proyectos de Suministro de Agua Caliente Sanitaria para Viviendas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sector</td>
<td>Energía</td>
</tr>
<tr>
<td>Subsector</td>
<td>Autogeneración</td>
</tr>
<tr>
<td>Resumen</td>
<td></td>
</tr>
</tbody>
</table>

La metodología está compuesta de tres capítulos y dos anexos. El primero corresponde a los antecedentes generales del sector; el segundo, a la formulación del proyecto que describe aspectos como: el diagnóstico y optimización de la situación actual y balance oferta-demanda y estudio de alternativas; y el tercero presenta la evaluación del proyecto que consta de la identificación de beneficios y costos; configuración de flujos netos; cálculo de indicadores y criterios de decisión. Por último, en anexos se presenta la nómina de beneficiarios y sus respectivas fichas.

<table>
<thead>
<tr>
<th>Proyectos a los que aplica</th>
<th>Construcción Sistema Solar Térmico para Agua Caliente Sanitaria en Viviendas Existentes</th>
</tr>
</thead>
</table>

Marco Normativo

- Política Energética “Energía 2050”
- Ruta Energética del Ministerio de Energía
- Itemizado Técnico para proyectos de sistemas solares térmicos de MINVU
- Reglamento DS 331 de la Ley 20.365
- Decreto N° 66 del 02 de febrero de 2017, regula instalaciones interiores y medidores de gas
- Reglamento de Instalaciones Domiciliarias de Agua Potable y Alcantarillado

Fuentes de los Principales Datos

- Explorador Solar. www.minenergia.cl/exploradorsolar/
- www.gasenlinea.gob.cl
- Inventario de Emisiones de GEI para Pymes. Ministerio de Energía
- Precios Sociales. Ministerio de Desarrollo Social
- Ficha de Beneficiarios recogida en terreno por formulador.

Principales Beneficios

- Ahorro de Gas por generación de energía térmica
- Disminución del CO₂ equivalente

Método Valorización Beneficios

- Valorización del ahorro de unidades de gas.
- Valorización de las unidades de CO₂ equivalentes reducidas

| Horizonte de Evaluación (años) | 15 |

Enfoque Evaluación

- Costo Beneficio.

Indicador

<table>
<thead>
<tr>
<th>Nombre Indicador</th>
<th>Valor Actual Neto Social (VANS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tasa Interna de Retorno Social (TIRS)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Criterio de Decisión</th>
<th>VANS > 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TIRS > Tasa Social de Descuento</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------------------</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Glosario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agua Caliente Sanitaria</td>
</tr>
<tr>
<td>Área de abertura o de apertura de un colector</td>
</tr>
<tr>
<td>Calefón Solar</td>
</tr>
<tr>
<td>Coeficiente o factor de pérdidas térmicas</td>
</tr>
<tr>
<td>Colector Solar Térmico o Colector</td>
</tr>
<tr>
<td>Depósito Acumulador o Acumulador</td>
</tr>
<tr>
<td>Eficiencia del sistema auxiliar</td>
</tr>
<tr>
<td>Eficiencia óptica</td>
</tr>
<tr>
<td>Sistema de Aporte Auxiliar (SAA)</td>
</tr>
<tr>
<td>Sistema Solar Térmico</td>
</tr>
<tr>
<td>Sistema Solar Térmico de Circulación Natural</td>
</tr>
</tbody>
</table>
1 Introducción

En Chile, más de un 11% de los hogares no tiene acceso a agua caliente sanitaria, el cual se considera un servicio básico que aporta en la calidad de vida y mejora la salud de las personas en los hogares (CASEN 2017). En zonas rurales este déficit alcanza un 28%. En la Figura 1 se aprecia el déficit de acceso a agua caliente sanitaria en hogares por región y en la Figura 2 el déficit en hogares rurales.

Figura 1: Déficit de acceso a ACS en hogares por región

Figura 2: Déficit de acceso a ACS en hogares rurales por región
La falta de agua caliente sanitaria influye en el estado de salud de las familias, aumentando el riesgo frente a enfermedades respiratorias y aquellas relacionadas a la falta de higiene personal, junto con un bajo nivel de confort.

El déficit de este servicio se explica principalmente por temas económicos. El costo del combustible y los sistemas de agua caliente no son asequibles para las familias ubicadas fuera del radio urbano.

Por otra parte, el suministro de combustibles convencionales en localidades rurales aisladas es restringido por problemas en el acceso y distribución. Existe discontinuidad o insuficiencia del suministro energético los que hace que la provisión de este servicio básico se vea entregada de manera parcial.

La presente metodología entrega lineamientos para suministro de agua caliente sanitaria (ACS) con sistema de aporte auxiliar (SAA) para uso residencial con el objetivo de mejorar el acceso a este servicio básico en localidades rurales y/o aisladas y disminuir la brecha energética descrita anteriormente.

2 Antecedentes generales del Sector

2.1 Descripción de la Política Energética

La Política Energética “Energía 2050”\(^1\) del Ministerio de Energía se sustenta en 4 pilares y uno de ellos es “Energía como Motor de Desarrollo” que se basa en la necesidad de un desarrollo energético inclusivo para Chile, caracterizado por un acceso equitativo, coordinación territorial y precios que favorezcan la competitividad. En este pilar se plantea la importancia y necesidad de definir el concepto y medición de “pobreza energética” y establece que este debe ir más allá de la cobertura eléctrica considerando también la calefacción, confort térmico, agua caliente sanitaria, entre otros, como necesidades básicas.

Otro pilar relevante como antecedente de esta metodología, es el de “Energía compatible con el Medio Ambiente” en donde se recalca la importancia de un desarrollo energético que considere fuentes de energías limpias y sus efectos medioambientales. Bajo este eje y el COP21\(^2\), Chile se

\(^1\) https://energia.gob.cl/sites/default/files/documentos/pen_2050_-_actualizado_marzo_2022_0.pdf

\(^2\) Conferencia de las Naciones Unidas sobre el Cambio Climático de 2015.
comprometió a reducir al 2030 el 30% de la intensidad de las emisiones de gases de efecto invernadero (GEI) del país, respecto al 2007. Además, se suma la meta de lograr un 50% de combustibles bajos en emisiones de GEI y de contaminantes atmosféricos en la matriz de combustibles al 2035, y un 65% al 2050.

Bajo el marco de la Política, el 2018 se definió la Ruta Energética del Ministerio de Energía\(^3\) que marca la pauta de trabajo y los lineamientos respecto a temas energéticos. En el eje número 2, “Energía con sello social”, se releva la importancia al acceso y mejoramiento del suministro energético en viviendas. El primer compromiso es hacer un levantamiento y diagnóstico de las familias que no cuentan con electricidad y otros servicios energéticos. Además, se propone trabajar en instrumentos de generación de proyectos de sistemas de agua caliente sanitaria en viviendas rurales utilizando energía renovable, con foco en sectores aislados, vulnerables y/o población indígena.

Así mismo, en el ODS 7 de la Agenda 2030 de Naciones Unidas para el Desarrollo Sostenible\(^4\) sobre Energía Asequible y No Contaminante tiene como primera meta “Garantizar el acceso universal a servicios de energía asequibles, confiables y modernos”. Los dos indicadores de esta meta son la proporción de la población con acceso a la electricidad y proporción de la población cuya fuente primaria de energía son los combustibles y tecnologías limpias.

2.2 Descripción de un Sistema Solar Térmico

Un Sistema Solar Térmico (SST) transforma la energía radiante emitida por el sol en energía térmica y la acumula, en forma de agua caliente, para posteriormente ser utilizada en los puntos de consumo de la vivienda.

Los sistemas solares térmicos están compuestos por un colector, que capta la energía de sol en un fluido de trabajo que circula en su interior (circuitó primario), y un acumulador, que es desde donde se hace el traspaso de energía térmica al circuito de consumo (circuitó secundario).

\(^4\) http://www.chileagenda2030.gob.cl/Agenda%202030/sobre-agenda/ods-1/1
Figura 3: Diagrama de componentes de un sistema solar térmico (SST) tipo termosifón con sistema de aporte auxiliar (SAA).

El circuito secundario, o de consumo, es la red de cañerías que salen del acumulador (ver Figura 3). Este circuito entra al sistema de aporte auxiliar (SAA) y en caso de que la temperatura no sea la adecuada para su consumo, el SAA eleva la temperatura hasta llegar a la deseada.

2.3 Uso de sistemas solares en Chile

En Chile, el uso de sistemas solares térmicos para uso residencial se ha fomentado principalmente por la franquicia tributaria para viviendas nuevas y por el Programa de Protección del Patrimonio Familiar (PPPF) del MINVU.

La Ley 20.365 establece la franquicia tributaria que se otorga a las empresas constructoras por instalar SST en viviendas nuevas (casas o edificios). Las empresas pueden reducir de sus impuestos a la renta desde un veinte a un cien por ciento del costo del SST y su instalación. El objetivo es promover y generar las condiciones en el mercado de SST para aumentar la adopción de esta tecnología a nivel residencial y así expandir el uso de la energía solar térmica.

Desde el año 2010 al año 2018, los resultados de la franquicia indican que se han instalado más de 65.000 sistemas, creciendo además la oferta del mercado de sistemas solares térmicos.

Por otra parte, existe el PPPF, que busca interrumpir el deterioro y mejorar las viviendas de las familias vulnerables. Entre las líneas de financiamiento está la instalación de SST con un subsidio...
máximo de 65 UF de acuerdo a la comuna donde se ubique la vivienda. Desde el año 2011 al año 2017 se instalaron más de 45.000 sistemas.

3 **Formulación del Proyecto**

3.1 **Descripción del problema**

El problema deberá identificarse como un estado negativo que afecta a las personas de un determinado territorio en relación con la disponibilidad de agua caliente sanitaria, para aseo personal y actividades del hogar. Se deben considerar aspectos económicos, suministro de combustibles, de salud, de calidad de vida, entre otros.

Es importante que el problema no se exprese como falta de una solución ya que así limita las alternativas.

3.2 **Diagnóstico situación actual**

El objetivo de este diagnóstico es, en base a un conocimiento técnico pertinente, poder identificar y establecer la magnitud del problema, la población afectada, describir el área afectada, describir el abastecimiento actual, entre otros.

Los antecedentes aquí entregados ayudarán a comprender el problema identificado y justificar la presentación del proyecto al Sistema Nacional de Inversiones (SNI).

3.2.1 **Identificación del área de influencia**

Se deberán describir las características del área de influencia. Esta corresponde a la zona geográfica en donde se ubica el conjunto de viviendas afectadas por el problema.

 a) Localización: Se debe señalar la región, provincia, comuna y localidad de la comunidad afectada o de la zona a la cual se requiere suministrar ACS.

 b) Características geográficas: coordenadas de latitud y longitud, altura sobre el nivel del mar, distancia y facilidad de acceso a la zona afectada.

 c) Características climáticas: radiación mensual y anual, tipo de clima.
d) Características demográficas y habitacionales: número de habitantes, pertenencia a pueblo indígena, número y tipo de viviendas, croquis de emplazamiento de viviendas, densidad de la población.
e) Infraestructura pública: sistema de Agua Potable y evacuación de aguas servidas, vías de acceso a centros poblados más cercanos.

Para la información disponible, desagregar entre hombres y mujeres. Asimismo, de ser posible, identificar y cuantificar las viviendas monoparentales o solo con jefas de familia.

3.2.2 Identificación de la población objetivo

Se debe identificar la población afectada, entregando los datos desagregados entre hombres y mujeres en conjunto con el total. Para ello, se debe entregar un listado de los hogares que no cuentan con agua caliente sanitaria o que no cuentan con suministro continuo, identificando cuáles podrían ser beneficiados por el proyecto.

La población de referencia corresponde a la población total del área de influencia; dentro de ésta, se identifican dos subgrupos: la población afectada por el problema (población con problema o afectada) y la no afectada (población potencial o sin problema). El proyecto podrá dar solución al total de la población afectada o a parte de ella; en este último caso, la población afectada que no resuelve su problema constituye la población postergada.
Será importante identificar el número de habitantes por vivienda de la población objetivo, ya que en función de este valor se determinará el tamaño de la solución, así como su proyección a 10 años. Asimismo, se deberá desagregar esta información entre hombres, mujeres y total.

3.2.3 Caracterización de la vivienda

Para postulación a etapa de diseño se requerirá indicar la ubicación de cada una de las viviendas, indicando sus coordenadas y presentar un croquis que grafique la ubicación espacial de éstas. Para esto, se deberá utilizar el formato del Anexo 1 Nómina de Beneficiarios. Junto con ello, se deberá entregar información de tipo declarativo, referente a la condición física de la vivienda, según lo indicado en Anexo 2 Ficha Beneficiario.

Para postulación a etapa de ejecución deberá presentarse los resultados del informe de la etapa de diseño. Éste deberá contener una caracterización detallada de cada una de las viviendas a beneficiar, realizada por un especialista. De esta manera, se podrá efectuar una descripción de la condición de la infraestructura y así desarrollar un correcto dimensionamiento de la solución. La información solicitada es la siguiente:

a) Materialidad de la vivienda, detallando techumbre y estructura principal.
b) Información detallada sobre número de habitaciones, baños y duchas.
c) Suministro de agua potable: describir el abastecimiento actual de agua (compañía distribuidora local, agua potable rural (APR), agua de pozo con o sin estanque, agua por acarreo, entre otros). En caso de contar con torre de agua se debe detallar la altura y capacidad de acumulación.
d) Redes de agua caliente y fría: disponibilidad, estado y materialidad.
e) Conexión a red eléctrica y descripción (estado instalaciones).
f) Suministro de agua caliente, en caso de contar con este servicio se debe informar adicionalmente:
 i. Tecnología y energía que utiliza.
 ii. Antigüedad y estado de los equipos, artefactos e instalación.
 iii. Gasto mensual (operación y mantención).
 iv. Suministro de combustible: detallar el combustible que utiliza y cómo se adquiere. Adjuntar boletas de energía.
Esta información deberá ser presentada de acuerdo con el formato indicado en Anexo N°3 Ficha Informe de Viviendas.

3.2.4 Demanda actual y proyectada

La demanda por agua caliente sanitaria de una vivienda estará dada por el consumo per cápita según se presenta a continuación:

\[
D_{acs} = q_{acs} \cdot N_{hab} \cdot 365 \left(\frac{lt}{año} \right)
\]

Donde:

\[
D_{acs} = \text{demanda agua caliente sanitaria por vivienda} \left[\frac{litros}{año} \right]
\]

\[
q_{acs} = \text{consumo diario per cápita de agua caliente sanitaria} \left[\frac{litros/día}{cápita} \right]
\]

\[
N_{hab} = \text{Número de habitantes de la vivienda}
\]

Para el valor del parámetro del consumo per cápita se utilizará el establecido en el reglamento de la Ley 20.365 sobre la franquicia tributaria respecto de sistemas solares térmicos para viviendas. Dicho reglamento establece un consumo por persona de 40 litros al día (temperatura de referencia de 45°C). Estos valores consideran el agua para aseo personal y actividades del hogar como cocina y lavado de ropa.

Para el valor de número de habitantes de la vivienda se debe considerar una proyección de la demanda en función del crecimiento de los integrantes del hogar.

3.3 Análisis de la oferta actual

Se debe describir el abastecimiento actual de ACS, en cuanto al tipo de energía utilizada, estado actual de la instalación y cantidad de litros generados por día.
En específico, se deberá describir:

- Energía utilizada al mes para calentar agua (kilos de gas, m³ de leña, kwh/mes, etc.)
- Describir si cuenta con redes de cañería de agua caliente, calefón, termo eléctrico etc. y su estado actual
- Indicar cuantos días al mes puede financiar la familia el sistema de provisión de agua caliente sanitaria
- La oferta se medirá como oferta diaria y mensual, en litros de agua caliente sanitaria.

3.4 Balance oferta demanda

El déficit corresponde a la diferencia entre la demanda total y la oferta, reflejando los requerimientos por el servicio de la población afectada por el problema. El déficit también puede ser expresado en términos cualitativos, esto es, como deficiencias en la calidad, incumplimiento de normativas o estándares internacionales, entre otros.

La proyección del déficit consiste en calcular para cada periodo “t” del horizonte de evaluación la diferencia entre demanda y oferta:

\[
Déficit_t = Demanda_{Total_t} - Oferta_t
\]

El déficit deberá estimarse en forma diaria y mensual.

3.5 Identificación de alternativas

3.5.1 Optimización situación base

Este proceso consiste en idear posibles mejoras al actual sistema provisión de ACS. En casos en que los hogares cuenten con un sistema de agua caliente sanitaria, la mejora debe enfocarse en la eficiencia del uso tanto de la energía como del agua, por ejemplo, mediante el recambio de grifería, uso de aireadores, teniendo en cuenta que estos funcionan si existe una adecuada presión del agua. Dentro de las mejoras a evaluar, se pueden considerar arreglos y reparaciones para disminuir pérdidas de energía o poder calorífico, por ejemplo, implementando la aislación de las cañerías de agua; reemplazo de algún componente que permita mejorar la eficiencia del combustible utilizado, entre otros.

En el caso de hogares que no cuentan con un sistema de suministro de ACS, no existe la opción de mejora de la situación actual. Por ello, y dado que se ha definido este servicio como una necesidad
básica, se considerará como situación base optimizada la provisión de ACS mediante gas licuado con un sistema de calefón tradicional. Esto, ya que es el sistema más asequible para las familias, tanto en términos económicos como tecnológicos.

3.5.2 Identificación de alternativas de solución

Para suministrar agua caliente sanitaria en una vivienda se pueden utilizar sistemas que funcionen a base de gas natural, gas licuado, electricidad, energía solar o leña. Sin embargo, hay que tomar en cuenta que la factibilidad de usar cada una de ellas depende de la localidad a estudiar dado que pueden existir problemas de abastecimiento de combustibles por el aislamiento de la comunidad.

El suministro de ACS en base a electricidad no se considera como alternativa dado que el precio para producir un kWh térmico con electricidad es el doble que con gas licuado\(^5\). Además, para utilizar este tipo de energía se necesitaría que la totalidad de las instalaciones eléctricas estén regularizadas, lo cual se dificulta sobre todo en localidades rurales.

Por otra parte, también se descarta la opción de gas natural dado que para este tipo de suministro se necesitaría conexión a la red de gas, posibilidad que hoy está restringida sólo a limitadas áreas del país. La leña, por su parte, se descarta por la contaminación intradomiciliaria.

Se considerará como solución a evaluar un sistema solar térmico con un SAA de calefón a gas licuado que complementa al sistema principal en distintos períodos del día o temporada. No se considerará otros combustibles para el SAA debido a que el elegido es el más adecuado para uso en viviendas rurales dado que el acceso continuo o formalizado de otros combustibles no está asegurado (instalaciones eléctricas deficientes, por ejemplo).

El sistema de aporte auxiliar (SAA) debe ser dimensionado para cubrir la demanda de energía en los momentos más desfavorables a los que pueda estar sometido el sistema energético solar, por lo que deben ser capaces de abastecer la totalidad de ACS por sí solos.

El dimensionamiento del calefón dependerá de los puntos de consumo a conectar. La recomendación de los fabricantes se puede ver en la Tabla 1.

\(^5\) Estudio de usos finales y curva de oferta de la conservación de la energía en el sector residencia, Corporación de Desarrollo Tecnológico, 2010.
<table>
<thead>
<tr>
<th>Uso en puntos de conexión</th>
<th>Litraje Mínimo</th>
</tr>
</thead>
<tbody>
<tr>
<td>¿Ducha?</td>
<td>1</td>
</tr>
<tr>
<td>¿Lavamanos?</td>
<td>1</td>
</tr>
<tr>
<td>¿Lavaplatos?</td>
<td>1</td>
</tr>
<tr>
<td>¿Tina?</td>
<td>1</td>
</tr>
<tr>
<td>¿Ducha?</td>
<td>1</td>
</tr>
<tr>
<td>¿Lavamanos?</td>
<td>1</td>
</tr>
<tr>
<td>¿Lavaplatos?</td>
<td>1</td>
</tr>
<tr>
<td>¿Tina?</td>
<td>1</td>
</tr>
<tr>
<td>¿Ducha?</td>
<td>1</td>
</tr>
</tbody>
</table>
3.5.3 Sistema Solar Térmico

El sistema solar térmico debe cumplir con las especificaciones del Itemizado Técnico de Sistemas Solares Térmicos y el Manual de Sistemas Térmicos, ambos documentos elaborados por el Ministerio de Vivienda y Urbanismo en conjunto con el Ministerio de Energía.

Para el dimensionamiento del estanque de acumulación a utilizar, se debe considerar la demanda energética de ACS de la vivienda \(DE_{ACS} \).

\[
DE_{ACS} = Q_{ACS}(T_u) \cdot \rho \cdot C_p \cdot (T_u - T_{AF})
\]

Donde

\(DE_{ACS} = \text{Demanda de energía térmica para producción de agua caliente [kWh]} \)

\(Q_{ACS}(T_u) = \text{caudal de consumo a una temperatura } T_u \left[\frac{m^3}{s} \right] \)

\(\rho = \text{densidad del agua } \left[\frac{kg}{m^3} \right] \)

\(C_p = \text{calor específico del agua } \left[\frac{J}{kg \cdot K} \right] \)

\(T_{AF} = \text{temperatura de agua fría [K]} \)

Según lo referido en el punto 3.2.4, \(Q_{ACS} \) a 45°C es de 40 litros por persona. Sin embargo, esta temperatura de referencia se considera en el punto de consumo y es distinta a la de acumulación, que por lo general ronda en los 60°C (variable).

La energía térmica en ambos puntos es la misma, por lo que al igualar ambas fórmulas se tiene lo siguiente:

\[
Q_{ACS}(45^\circ C) \cdot (45^\circ C - T_{AF}) = Q_{ACS}(60^\circ C) \cdot (60^\circ C - T_{AF})
\]

Considerando la temperatura de agua fría de referencia a 15°C, el caudal necesario en el acumulador es de alrededor de 27 litros por persona.

Determinado el caudal necesario es posible determinar la demanda de energía térmica por unidad residencial y estimar la demanda total del proyecto. Esta información debe ser analizada y contrastada con la capacidad y oferta del sistema eléctrico público para verificar la viabilidad de la operación del proyecto y para identificar las inversiones necesarias para que el sistema eléctrico
provea la energía necesaria. Dichas inversiones deben ser consideradas en el costo de inversión del proyecto, valorizándose a precios sociales en la evaluación social, tema tratado en el siguiente apartado.

4 Evaluación Social del Proyecto

4.1 Enfoques de evaluación

La evaluación social de proyectos permite determinar en qué medida un proyecto de inversión tendrá un efecto sobre la sociedad en términos económicos y de bienestar. En el SNI se utilizan dos enfoques de evaluación:

- **Análisis costo-beneficio**: este tipo de análisis permite identificar, entre un conjunto de alternativas de inversión, cuál es la que genera el mayor beneficio neto para la sociedad. Requiere identificar, cuantificar y valorizar todos los beneficios y costos del proyecto, en precios sociales, y obtener indicadores como el Valor Actual Neto (VAN) y la Tasa Interna de Retorno (TIR) que permitan concluir sobre la rentabilidad económica del proyecto.

- **Análisis costo-eficiencia**: asume que los beneficios son deseados por la sociedad por lo que no se calcula un valor monetario de los beneficios. El objetivo de este enfoque es evaluar alternativas que permitan obtener el beneficio buscado, para identificar aquella que permite obtener el beneficio buscado, utilizando la menor cantidad de recursos. Para ello, se debe realizar una completa identificación, cuantificación y valorización de los costos asociados al proyecto, expresados en precios sociales, para construir posteriormente indicadores como el Valor Actual de Costos (VAC) y el Costo Anual Equivalente (CAE).

Las iniciativas de inversión para provisión de agua caliente sanitaria en hogares se evaluarán, provisoriamente, con un **enfoque costo-beneficio** considerando como situación base optimizada el consumo de agua caliente sanitaria con calefón a gas licuado, por lo que se compararán estos costos
con el proyecto6. Esto implica que se considerarán solo las inversiones marginales del sistema solar con respecto al abastecimiento con gas licuado.

4.2 Identificación beneficios

Un proyecto de suministro de agua caliente sanitaria puede generar los siguientes beneficios sociales:

 a) Beneficios por el ahorro de gas al usar un sistema solar térmico para calentar agua.
 b) Beneficios por reducción de CO$_2$ equivalente por unidad de gas no utilizada.

Entre los beneficios que no serán valorados monetariamente se encuentran mejoras en las condiciones de higiene y de confort de las personas por tener acceso a agua caliente sanitaria.

4.3 Cuantificación de beneficios

Para el cálculo de los beneficios por el uso de SST para calentamiento de agua, se usará como insumo principal el Explorador Solar7. Esta plataforma simula el SST en un hogar para determinadas localizaciones y entrega la energía en kWh que genera al año, el consumo aportado por el SST (porcentaje de la energía que proviene de solar) y el ahorro monetario en comparación a calentamiento de agua con calefón a gas licuado de petróleo.

Los valores por considerar para poder efectuar la simulación en el explorador solar son los que se presentan en la Tabla N°2. Estos valores son referencias estándar que no necesariamente coincidirán con los colectores finales que se instalarán, sin embargo, son una referencia para poder realizar la evaluación social a nivel de perfil.

<table>
<thead>
<tr>
<th>Características</th>
<th>Valores</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6 La determinación de beneficios por mayor consumo de agua potable requiere de mayores análisis que, para la dimensión del tipo de iniciativas consideradas, pueden resultar de costo prohibitivo. Por este motivo, se aborda bajo este enfoque hasta que se puedan realizar estudios que permitan facilitar la estimación de los beneficios por consumo a través de un enfoque metodológico y/o la aplicación de un precio social. Esto será incorporado en una futura actualización de este documento.

7 https://solar.minenergia.cl/inicio
Área de apertura del colector	2 m²
Eficiencia óptica del colector	67%
Coeficiente de pérdidas térmicas del colector	3,8 W/m²K
Eficiencia del SAA (calefón a GLP)	80%

En primer lugar, deberá estimarse el total de kg de gas ahorrados al año al utilizar el SST para calentar el agua. Este valor se obtiene a partir de los resultados entregados por el Explorador Solar, donde se indica el total de kWh generados al año. Para transformar este valor a kilogramos de gas, deberá dividirse por el poder calorífico del gas licuado de petróleo, PC_{glp} (14 kWh/kg) y por el factor de eficiencia del calefón estándar (FEC).

\[
\text{Gas ahorrado (kg año)} = \frac{\text{Total kWh}}{PC_{glp} \cdot FEC}
\]

En tanto, la reducción de CO$_2$ equivalente deberá estimarse aplicando el factor de emisiones para el gas licuado (FE$_{glp}$), cuyo valor es 2,985 kg CO$_2$ por kg de combustible.

\[
CO_2 Eq \text{ (ton año)} = \frac{(\text{Gas ahorrado (kg año)} \cdot FE_{glp})}{1000}
\]

4.4 Valorización de beneficios

Los kilos de gas ahorrados serán valorados a su precio de mercado. Para ello, se deberá ingresar al Explorador Solar el valor del kg de gas, en la comuna donde se realiza el proyecto. Este valor debe consultarse el sitio www.gasenlinea.gob.cl a partir del valor del cilindro de 15 kg, dividiéndolo por 15 para obtener el precio unitario.

El Explorador Solar estima directamente los ahorros, el cual deberá ser utilizado como el beneficio del primer año, descontándole el IVA. El valor obtenido se obtiene de aplicar la siguiente fórmula:
Ahorro gas ($/año) = \frac{\text{Gas ahorrado (kg/año)}}{1,19} \cdot \left(\frac{\text{Precio cilindro gas 15 kg}}{15} \right)

La valorización del ahorro de CO$_2$ se realizará usando el precio social publicado por el Ministerio de Desarrollo Social.8

\[\text{Disminución CO}_2 \left(\frac{\$}{\text{año}} \right) = \text{CO}_2\text{Eq} \left(\frac{\text{ton}}{\text{año}} \right) \cdot \text{Precio social CO}_2 \left(\frac{\$}{\text{ton}} \right) \]

4.5 Identificación de costos

Los costos por considerar son los de inversión, operación y mantenimiento de la alternativa de sistema de ACS.

4.5.1 Costos de inversión

a) Costo del estudio de cálculo estructural de la superficie en donde se instalarán los colectores solares. (postulación a etapa de diseño).

b) Costo de equipos: adquisición e instalación del SST; costo del SAA (calefón solar); costo de bomba presurizadora en caso de ser necesario.

c) Costos de fortalecimiento de la superficie en que se instalarán los colectores solares, en caso de que el estudio señalado en el punto “a” precedente así lo determine. Para la etapa de diseño será un valor estimativo según información recopilada por el formulador. Para etapa de ejecución, este dato será entregado en el estudio de cálculo estructural realizado en el diseño.

d) Reinversiones: no se consideran reinversiones ya que el horizonte de evaluación es de 15 años al igual que la vida útil del componente acumulador.

4.5.2 Costos de operación

Incluye los recursos necesarios para la operación del sistema, como insumos y materiales. Para los sistemas SST se estiman que no incurren en costos de operación; para el SAA deberá incurrirse en consumo de gas licuado, sin embargo, esto no conlleva un costo marginal en relación a la situación base, por lo que no se cuantifica.

4.5.3 Costos de mantenimiento

Incluye los recursos a utilizar en el mantenimiento de los equipos, equipamiento e infraestructura del sistema, como insumos, materiales y mano de obra. Se considera una mantención al año tanto del SST como del SAA.

Para la construcción de los flujos de costos y beneficios se deberá considerar la situación base optimizada. Dado que los costos de mejoramiento o instalación de la red interior de agua caliente se deberían incurrir tanto en la situación base optimizada como en la situación con proyecto, este costo no deberá ser incluido en el flujo. Asimismo, dado que en la situación base optimizada se debería invertir en la adquisición e instalación de un calefón tradicional, este valor deberá restarse en el flujo, para que de esta forma se refleje sólo el valor incremental del calefón solar con respecto al tradicional.

4.6 Construcción flujos netos

A partir de los costos de inversión, operación y mantenimiento y los beneficios se debe construir los flujos netos durante el horizonte de evaluación, valorados a precios sociales.

4.6.1 Corrección a precios sociales

Para la valoración de los costos deberán utilizarse los precios de mercado de mano de obra y combustibles o energía eléctrica, ajustados por factores de corrección que permitan expresarlos en términos de precios sociales. En el caso de precios de combustibles o energía eléctrica, esta corrección consistirá en descontar todos los impuestos que incluya el precio de mercado, como IVA e impuestos específicos.
4.6.2 Horizonte de evaluación

Para la proyección de los flujos de costos y beneficios, el horizonte de evaluación de los proyectos de ACS para viviendas será de 15 años, por estimarse que es la vida útil más corta de uno de los componentes del sistema solar térmico (estanque de acumulación).

4.6.3 Valor residual

Corresponde al valor estimado que tendrán el SST y SAA al término del horizonte de evaluación del proyecto.

Los colectores del sistema tienen una vida útil de 20 años, por lo que al año 15 aún contarán con un 25% vida útil. Por su parte, el acumulador y el SAA tienen ambos una vida útil de 15 años. Por lo tanto, el valor residual del sistema se estimará como un 25% del valor de inversión del acumulador.

4.6.4 Flujos Netos

Los flujos netos del proyecto se deben considerar para todo el horizonte de evaluación. Se deben evaluar los costos para cada año y cómo estos varían.
<table>
<thead>
<tr>
<th>Ítems</th>
<th>Año 0</th>
<th>Año 1</th>
<th>Año 2</th>
<th>...</th>
<th>Año 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Beneficios por ahorro de gas</td>
<td>BG₁</td>
<td>BG₂</td>
<td></td>
<td></td>
<td>BG₁₅</td>
</tr>
<tr>
<td>(2) Beneficios por disminución de CO₂ equivalente</td>
<td>BCO₂₁</td>
<td>BCO₂₂</td>
<td></td>
<td></td>
<td>BCO₂₁₅</td>
</tr>
<tr>
<td>(3) Costos Operación</td>
<td>CO₁</td>
<td>CO₂</td>
<td></td>
<td></td>
<td>CO₁₅</td>
</tr>
<tr>
<td>(4) Costos Mantención</td>
<td>CM₁</td>
<td>CM₂</td>
<td></td>
<td></td>
<td>CM₁₅</td>
</tr>
<tr>
<td>(5) Inversión inicial</td>
<td>Iᵢᵕ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6) Valor Residual</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VR</td>
</tr>
</tbody>
</table>

Flujo Neto

(1) +(2) - (3) - (4) - (5) +(6)

| I₀ | FN₁ | FN₂ | ... | FN₁₅ |

Donde:

BGᵡ: Beneficios por Ahorro de gas año t

BCO₂ᵡ: Beneficios por disminución del CO₂ equivalente en el año t.

COᵡ: Costo operación año t.

CMᵡ: Costo mantención año t.

Iᵢᵕ: Inversión inicial en sistema solar térmico y sistema auxiliar (valor marginal)

VR: Valor Residual.

FNᵡ: Flujo neto año t.
4.7 Cálculos de indicadores y criterios de decisión

El cálculo de indicadores y la aplicación de criterios de decisión permiten seleccionar la alternativa más conveniente. En proyectos de suministro de agua caliente sanitaria se aplica el enfoque costo beneficio, por lo que se estimarán los indicadores de rentabilidad VAN y TIR social.

4.7.1 Tasa social de descuento

Para la evaluación social de proyectos se utiliza la tasa social de descuento, que representa el costo alternativo que significa para el país destinar fondos al proyecto y no a un mejor uso alternativo. Esta tasa se utiliza para actualizar o descontar los flujos futuros del proyecto estimados para el horizonte de evaluación, con el fin de estimar indicadores.

4.7.2 Valor actual neto social (VAN Social)

Es la suma de los flujos futuros en un periodo fijo que están expresados, mediante la tasa de descuento, en valores actuales. En este caso se debe calcular el VAN social, por lo que se utilizará la tasa social de descuento.

\[
VAN Social = -I_0 + \sum_{t=1}^{n} \frac{F_t}{(1+r)^t}
\]

Dónde:

- \(VAN Social\) = Valor Actual Neto expresado en valores sociales
- \(I_0\) = Inversión inicial
- \(F_t\) = Flujo neto al final del período \(t\)
- \(n\) = horizonte de evaluación
- \(r\) = tasa social de descuento

El criterio de decisión utilizando VAN es el siguiente:

<table>
<thead>
<tr>
<th>VAN Social</th>
<th>Criterio de decisión</th>
</tr>
</thead>
<tbody>
<tr>
<td>=0</td>
<td>Indiferente de ejecutar el proyecto</td>
</tr>
<tr>
<td><0</td>
<td>No es conveniente realizar el proyecto</td>
</tr>
<tr>
<td>>0</td>
<td>Es conveniente realizar el proyecto</td>
</tr>
</tbody>
</table>
4.7.3 Tasa interna de retorno social (TIR Social)

Mide la rentabilidad promedio de un proyecto, suponiendo que los flujos se reinvierten en el mismo proyecto a una tasa constante. La Tasa Interna de Retorno Social corresponde a la tasa que hace el VAN Social sea igual a cero. La TIR Social se calcula de la siguiente manera:

\[-I_0 + \sum_{t=1}^{n} \frac{F_t}{(1 + TIR Social)^t} = 0\]

El criterio de decisión utilizando la TIR Social, comparando con la Tasa Social de Descuento (TSD), es:

<table>
<thead>
<tr>
<th>TIR Social</th>
<th>Criterio de decisión</th>
</tr>
</thead>
<tbody>
<tr>
<td>= TSD</td>
<td>Indiferente de ejecutar el proyecto</td>
</tr>
<tr>
<td>< TSD</td>
<td>No es conveniente realizar el proyecto</td>
</tr>
<tr>
<td>> TSD</td>
<td>Es conveniente realizar el proyecto</td>
</tr>
</tbody>
</table>

4.7.4 Análisis de sensibilidad

El análisis de sensibilidad reconoce que los valores de las variables que se han utilizado para llevar a cabo la evaluación del proyecto pueden tener desviaciones, como, por ejemplo, el valor de combustible, el valor de la inversión, que puedan producir efectos de consideración en la estimación de los resultados.

La evaluación del proyecto será sensible a las variaciones de uno o más parámetros si, al incluir estas variaciones en el criterio de evaluación empleado, la decisión inicial cambia. Es importante visualizar las variables que tienen mayor efecto en el resultado frente a distintos grados de error en su estimación, lo que permite decidir acerca de la necesidad de realizar estudios más profundos de esas variables para mejorar las estimaciones y reducir el riesgo.

4.8 Herramienta de cálculo

Para facilitar la evaluación de los proyectos de ACS para viviendas del sector rural se ha elaborado una herramienta de cálculo en el Programa Excel, denominada “Planilla de
Evaluación Agua Caliente Sanitaria Domiciliaria.xls”, que permite utilizar parámetros técnicos y económicos y realizar la evaluación económica de manera simplificada.

5 Modelo de gestión

Durante la etapa de operación del proyecto, el sistema de agua caliente sanitaria requiere de mantención y reinversiones. Por ello, se deberá indicar el modelo de gestión apropiado para asegurar la sustentabilidad del proyecto.

Dentro de las medidas que se deben considerar se encuentran las siguientes:

- Esquema de mantenimiento que se realizará
- Periodos de inspección
- Programación de reinversiones
- Fuentes de financiamiento de la mantención

Además, se deberá indicar el responsable de cada ítem, el cual puede estar a cargo de la institución formuladora o se pueden definir figuras para que los mismos beneficiarios sean responsables de los sistemas (comité, cooperativa u otra organización).

6 Recomendaciones

En esta sección deben incluirse las principales conclusiones del estudio de formulación y evaluación social del proyecto, y en forma específica, las recomendaciones que se sugieren. Deberán indicarse todos aquellos factores externos al proyecto que condicionan los resultados obtenidos.

Deberán incluirse en este punto, además, aquellas variables que presentaron un mayor problema en su estimación, como también los problemas que se presentaron al formular el proyecto.

Se debe tener en consideración que, en el financiamiento del proyecto de construcción se incluyen ítems de adecuación de infraestructura que no se contabilizan en la evaluación social dada la definición de la situación base optimizada, pero que son necesarias para que el sistema pueda

9 Link a planilla
funcionar de forma adecuada, tales como, mejoramiento e instalación de redes interiores o instalación de bomba presurizadora.

7 Referencias

- Reglamento de la Ley N° 20.365 (DS 331 del 26 de mayo de 2010, Ministerio de Energía)
ANEXO 1: Nómina de beneficiarios

Para postulación, tanto a etapa de diseño y ejecución, se deberá entregar la nómina de todos los beneficiarios del proyecto indicando la información que aparece a continuación en la tabla. Esta información debe ser completada por el formulador del proyecto. Completar sólo para el beneficiario titular.

<table>
<thead>
<tr>
<th>Número</th>
<th>Nombre y apellido beneficiario titular</th>
<th>N° Rut</th>
<th>Sexo</th>
<th>N° personas que habitan en la vivienda</th>
<th>Coordenadas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Latitud</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Longitud</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANEXO 2: Ficha de beneficiario

Se deberá completarla “Ficha de beneficiario”. Este documento deberá ser llenado con información declarativa entregada por los beneficiarios, de tal forma que ésta permita desarrollar el estudio preinversional del proyecto.

<table>
<thead>
<tr>
<th>Ficha de beneficiario</th>
</tr>
</thead>
<tbody>
<tr>
<td>i. Información beneficiario</td>
</tr>
<tr>
<td>Nombre</td>
</tr>
<tr>
<td>Número nómina</td>
</tr>
<tr>
<td>Sexo</td>
</tr>
<tr>
<td>Personas (incluyendo jefe de hogar)</td>
</tr>
<tr>
<td>ii. Características vivienda</td>
</tr>
<tr>
<td>Tamaño vivienda</td>
</tr>
<tr>
<td>Habitaciones</td>
</tr>
<tr>
<td>Cocina</td>
</tr>
<tr>
<td>Material techumbre</td>
</tr>
<tr>
<td>Material paredes y estructura principal</td>
</tr>
<tr>
<td>iii. Suministro de agua potable e infraestructura</td>
</tr>
<tr>
<td>Disponibilidad de agua potable</td>
</tr>
<tr>
<td>Descripción (tipo de abastecimiento)</td>
</tr>
<tr>
<td>Redes de agua fría al interior de vivienda</td>
</tr>
<tr>
<td>Material</td>
</tr>
<tr>
<td>Redes de agua caliente</td>
</tr>
<tr>
<td>Material</td>
</tr>
<tr>
<td>Sistema de agua caliente sanitaria</td>
</tr>
<tr>
<td>Descripción (tecnología y combustible)</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Antigüedad equipo</td>
</tr>
</tbody>
</table>

iv. Conexión eléctrica

<table>
<thead>
<tr>
<th>Conectado a red</th>
<th>Si / No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medidor propio</td>
<td>Si / No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Valor cuenta de luz</th>
<th>$</th>
</tr>
</thead>
</table>
ANEXO 3: Ficha Informe de Vivienda

La información de este anexo deberá ser validado por un profesional competente, ya sea profesional de arquitectura, ingeniero o constructor.

<table>
<thead>
<tr>
<th>Ficha de beneficiario</th>
</tr>
</thead>
<tbody>
<tr>
<td>i. Información beneficiario</td>
</tr>
<tr>
<td>Nombre</td>
</tr>
<tr>
<td>Número nómina</td>
</tr>
<tr>
<td>Personas (incluyendo jefe de hogar)</td>
</tr>
<tr>
<td>ii. Características vivienda</td>
</tr>
<tr>
<td>Tamaño vivienda</td>
</tr>
<tr>
<td>Habitaciones</td>
</tr>
<tr>
<td>Cocina</td>
</tr>
<tr>
<td>Material techumbre</td>
</tr>
<tr>
<td>Material paredes y estructura principal</td>
</tr>
<tr>
<td>iii. Suministro de agua potable e infraestructura</td>
</tr>
<tr>
<td>Disponibilidad de agua potable</td>
</tr>
<tr>
<td>Descripción (tipo de abastecimiento)</td>
</tr>
<tr>
<td>Redes de agua fría</td>
</tr>
<tr>
<td>Material</td>
</tr>
<tr>
<td>Redes de agua caliente</td>
</tr>
<tr>
<td>Material</td>
</tr>
<tr>
<td>Sistema de agua caliente sanitaria</td>
</tr>
<tr>
<td>Descripción (tecnología y combustible)</td>
</tr>
<tr>
<td>Antigüedad equipo</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>iv. Conexión eléctrica</td>
</tr>
<tr>
<td>Conectado a red</td>
</tr>
<tr>
<td>Off grid</td>
</tr>
<tr>
<td>Medidor propio</td>
</tr>
<tr>
<td>v. Informe estructural</td>
</tr>
<tr>
<td>Estado estructural de la techumbre (describir estado y resultados principales de estudio)</td>
</tr>
<tr>
<td>Descripción</td>
</tr>
<tr>
<td>Refuerzo estructural (Indicar si requiere)</td>
</tr>
<tr>
<td>Descripción</td>
</tr>
<tr>
<td>Instalación a piso (En caso de que estudio estructural no sea favorable y refuerzo no sea suficiente)</td>
</tr>
<tr>
<td>Descripción</td>
</tr>
</tbody>
</table>